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AN ALGEBRAIC APPROACH TO
SUPER-RESOLUTION ADAPTIVE ARRAY PROCESSING

James A. Cadzow & Thomas P. 3ronez

Department of Electrical Engineering
Virginia Polytechnic Institucte and State University
Blacksburg, Virginia 24061

ABSTRACT

In chis paper, an algebraic characterization
is made of the problem of resolving two or more
closely spaced (in frequency wave number) plane
waves incident on a linear array. This algebraic
characterization in turn suggests a number of
idaptive procedures for affecting the desired reso-
iution. One of chese procedures is herein empiri-
cally shown ro provide significantly better
serformance wnen compared to other contemporary
orocedures used {n array processing such as the
wiener filter, Pisarenko and MM algorithms.

Thig includes bdoch a better frequency resolving
:apability and a faster :zonvergence ratae.

I. INTRODUCTION

An lmporrant array processing problem is chat
>f jetermining the directions of propagation of
olane waves incident on a linear array of uaiform-
Ly 3paced sensors [lj. Concemporary speccral
ina.vels has been applied to this problem and nas
led o the development of a variety of processing
mechods that are able to resolve plane waves with
nearly identicai directions of propagation. These
nernods inciude the Wiener Filter mecthod [2], the
‘aximum Likelihood aethod [2], and, very recently,
zhe Pisarenko method (3. This paper presents an
irrav srocessing approach based upon an algebraic
:naracterizacion »f =he 1irrav processing problem.
This aporoach is snown zo encompass the methods
Tentioned ibove as well 1s 3uggesting aiternate
“etnods.

I, MODEL OF THE ARRAY DATA

Let us consider zhe model of multiple plane
wvaves lacident on a linear array of p sensors
:niisemiy spaced Jd units apart in which the
sensor measuremencs ire concaminated bv iddicive
Whe.2 aoise. 17 there are q olane waves, {:
frilows tnat it iav carticular instant {n time,
I Jrrav 3aca yiay, ) :oa o p=i, has the form
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and the {n(n)} are uncorrelated zero mean random
variables with variance 12, the {Ak} are the plane
waves' complex amplitudes, the I3y; are pnase
angles dependent on the sampling ianstant, the {3y;
are the plane waves' directions of propagation
ralacive to the array, and + 13 the common wave-
length of the plane waves. We assume that the .y
are all differenc. Clearly, an estimate of the
spatial frequencies .yi directly vields an esti-
mate of the directions of propagatiom %y :.

The above ser >f p instantaneous measure~
ments (1) is referred to as a "snapshot". To aid
the estimation of the wi, we utilize a aumber of
snapshots taken sequentially ia time. The arrav
data chen has the form

A, ej’kmejn“k. 0<

1.
3

ar 30

Yplm) = “n<“) + (1)

n< o=
k=l cm<y

< L
b <
where =3 is the snapshot index and M 13 the
total aumber of snapshots used. In this Dodei, we
assume that the phase angles 2yp: are uncorreidtad
random variables uniformly distriduted on [=7, ~~,.
This description hoids due 2> the independanca >f
cthe sinusoidal sources ind from the approximate
randomness °f zime-sampling Zar delow the Nvquist
race.

Iz will be convenient o redresent the Ziven
data in vector notation. The 2fd snapshot ) will
be represented bv the p-: 1l column vectcr

v {y_ 1 YLy L v te=l)l ey
In ® {00 vy 2?

We also define the pure complex sinugcid vector as

: i2a Ptp=lda.” R
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and the aoise vector isscciatad wizh zhe =T saap-
3not as
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The array daca yp is random due to its
dependency on the random phase angles (3ygi and
the contaminative noise <"_(n)}. Assuming that
thesa random variables are dairwise uncorrelated

and invariant with respect to the snapshot index =,

it follows that each data vector yy can be inter-
sreted as being a windowed realization of a wide-
sense stationary randcm vector process. The Tean
value of this process is che zero vector, while its
associaced p <« p covariance macrix is specified by

q
TR - -
I =g{y v: 3%+ kﬁlpk Sup Sup (8)

where I, is the pxp identity matrix and

2, = Ag.~ 1is the power of the k&l plane wave.
Since the random vector process is wide-sense
stationary, the covariance matrix R must be posi-
zive semi-definite, Toeplizz, and Yermitian. Ve
shall now give an algebraic approach to identifving
che piane wave fraquencies .y ', based upon the
structure of the data y; and the associated co-
variance aatrix R .

III. ALGEBRAIC PROCESSING APPROACH

The approach to be presented is depeadent on
determining a nontrivial p=x«1l vector a that {s
osrzhogonal to the noise-fres component >f each of
the data vectors Yn . This orcthogonality is de-
fined >v the generil ianer product relationship

a M. (9)
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I l<m<M . In elther of chese cases, it is
intujtively desirable to select a coefficient
vector which is nearly orthogonal to each of the
daca vectors in some well-defined manner. Once
such a coefficient vector nas beean obtained, the
plane wave frequencies are determined by examina-

tion of the zeros of the z-transform of this vecrtor.

Specifically, zeros cthat are close to the unit
circle are considered to be indications of plane
waves, Clearly, closeness is a matter of ‘udge-
ment; it may be conveniently avaluaced by search-~
ing for nulls in the nagnitude of the coefficient
vector's Fourier transform as given by

,\(w) - <§' h> .

To obtain a mathematical measure of closeness
to orthogonality, it is beneficial to iantroduce an
orthogonality error vector e(a) vhose ath element
is the inner product of a with ¥, . We define
the optimum 2 to be a vector a° which mini-
mizes some positive derinite functiomal £ of
2(a) . Hence we write

2(a) = [e(l) atd) ... eM]”

where
e(a) = <a, v.>, (10)
and
f{e(a’) ! »min flea): (i
aeA

where A is some pruaently chosen set ‘rom which
the solution vector a° is o be selected.

The inner product in (10) and the functional
in (11) are general at chis poiat. We shall ncw
choose in particular the standard vector inner
product :a, Up> ® a¥m* and che normalized aean

square arror functiomal <fie: = = E( e =;. It

can be shown that "

i1l ¥ o

£ . - ' < @ s =0 ol

flea) =g B a2 =3 a3 WD
o=l

whera R} is the covariance natrix :3). The
funcecional (1l) {8 to be =min.aized 3ccording <o
sode constraint such that a’ is unique ana non-

crivial. Lét us now consider two possible :on-
straints.

(d4) Hyperpiane cConstraint
The first constrainc is that 1’ lies ) a
1yperpiane specified bv

A 2P aatenaT e bS]
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quadracic surface specified by

a=iag:c?: a"wasl} (16)
where W 1is a positive dafinite, symmetric pxp
matrix. The solution to (1ll) with this constraint
can be shown ro be

a’ = :::::é::::l

WX

X (7n

g

¢/ “min =
and the ainioum criterion’s value {s

fle@i = Ao (18)

where (Amin, £ ) is Ehe ainimum-eigenvalue and
aigenvecror pair of W 13 .

These two general solutions (14)-(18) encom-
pass the three processing methods anoted in the
latroduccion: (i) For the choice h = [1 O ... 0]7,
(14) is the Wiener Filter solution [2]. As in
linear prediczion, this constrainc implies that
the first element of a° i3 fixed and the other
elements are unconstrained. (ii) For the choice

h = 3,, (13) is che Maximum Likelihood soluciom [Z].

This constraint implies that A°(z) has unity

2ain at 2z = 2j® and optimally reduced gain else-
where. (iii) For W = I, , the quadractic surface
is a aypersphere of radius one, and equacion (17)
is a generalization of the Pisarenko solutiomn (3],
{3]. There are several differences which discin-
3uish this procedure Zrom Pisarenko's. First, no
ARIA model is invoked, as is done by Haykia [3].
Second, neirher noise power removal nor matrix
srder reduction are required. Third, this solution
is based upon a minimization sctrategy and so
justifies estimates, generally even non-Toeplitz,
>f the covariance amacrix R . In the special case
>f 1 Toeplitz estimate, a power identification
zachnique like Pisarenko’s can be employed, as will
Se shown .Later. Finally, the zeneral constratnt
ratrix 4 allows greater flexibility than does

che Pisarenko mechoa.

Jince the Wiener Filtaer solurion has better
regolution than the Maximum Likelihood solution
12!, we snall aereafter :onsider only the hyper-
slane solution with a = {1 Q +-- 0]" and the

inadratic solution with W = I (hypersphere
solucion).

7. summarize the development to this point,
the algebraic approach is based on approximating
in orthogonality condition between a solution
vaczor ind each of che daca vectors. This
ipproach 3sugkgests many different processing
mechucs, Jepending oun che choice of an inner pro-
iucz, in ervor functional, and a minimizacion
xasecraint.

7. ZOVARIANCE MATRIX SSTIMATE

Ty 2moloy cne hvperplane and avpersphere
soLlutions given ibcve, in astimacte ¢ the co-
“Arlafice Macrix 13 rvequired. A standard escinmate

3.

s 1 1 -

&-g A e (19)
m=l

It is apparent that SM is unbiased, Hermitian,

but in general not Toeplitz. Furthermore, only

one lag product from each daca vector is used in

formulacing aach eiemenc of Ry ._ A more desirable

estimate is given by the matrix 2y whose elements

are

By(dod) = ct=), L4, 5 <9 (20)
where
cw =t 1 27Ty ert ) L 0cacpl
Haml P s 2R T

¢(a) = c*(-n) , -p+l<n<0.

It is apparent that Ry 1s unbiased, Hermitiam,
and Toeplitz. Furthermore, it incorporates p-n
lag products in formulating the covariance element
c(n). Therefore the variance of Ry is iower than
that of Ry . Thus, the estimate Rm is superior
to the standard estimate in terms of its Toeplitz
structure and lower variance.

The Toeplitz structura of Ry has an import-
ant implication when used with :he nypersphere
solution. To appreciate this, consider a general
Toeplitz Hermitian marrix with a discinct minimum
eigenvalue lgjn - An extension of Makhoul's
findings (5] shows that the z=-transform X(z2) of
the eigenvector x corresponding to \giy has ail
of its zeros located on the unit circle. Thus the
hypersphere solucion will exactly indicate the
presence of p-l plane waves if gy, is distimcr.
Thus we have a Pisarenko-like solution and it is
possible to apply a power determination zechnique
[4], [6] to separate the q actual plane waves
from the p-q-l1 spurious indications (assuming
q<p).

Given an estimate of che covariance marrix,
either the hyperplane or hypersphere solutions can
be employed. We now give simulation results for
these different solnrions,

V. SIMULATION RESULTS

To compare the performance of thiese processing
xzethods, the data vectors (7) were generated dy
computer simulation. The simulation model corves-
ponded to that chosen by Gabriel (2] ia ais com=-
parative paper. Namely, the case of two sources
incident on an array was considereg. The parameter
selections were q = 2, p = 8, 71= =1, 4] = &) =
31.62 (30dB SNR) and 3.152 (l0dB SNR), 3; = 18°,

97 = 22°, d = /2, and M = 350 (many snapsnots) and
10 (few snapshots).

The data vectors were analyzed av Iour
mechods: the hvperplane solution with astimates
Ry and R , and che hypersphere solution with Ru
and Rm . 3oth the hyperplane solurion with 3R
and the hypersphere soiution with 3 showed gcod
resolution hut large spurious affeccs. Resuils
for che other two methods are shown ia Figure L.
In zhis Figura. the hyperplane soiuticn has deen
avaluated via 1rs Tourier zransform and :the hyter-




sphere solution has been evaluated using the power

determination technique. Overlayed solutioms for
tan Jifferent realizations of the random data are
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FIGURE 1. TWO~SOURCE STMULATION 41TH SUUHC‘S AT ‘5 AND 22 CESREZS,
(A1 HYPERPLANE SOLN. NON-T "’ £37.:, 3008 SN 50 SNRPSH2TS,
(B) HYPEASPHERE 30LN. TuEP' 2 £57.1., 3008 \NR 30 3NRPSHOTS,
(C3 HYPERPLANE SOLN. KNGN-TCE= E57.1, 1308 SNR, 10 3NAPSmTE
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investigation of the algebraic approach i3 warranc-
ad in order to fully explioit its potential.




